Fine-mapping quantitative trait loci with a medium density marker panel: efficiency of population structures and comparison of linkage disequilibrium linkage analysis models
نویسندگان
چکیده
Recently, a Haley-Knott-type regression method using combined linkage disequilibrium and linkage analyses (LDLA) was proposed to map quantitative trait loci (QTLs). Chromosome of 5 and 25 cM with 0·25 and 0·05 cM, respectively, between markers were simulated. The differences between the LDLA approaches with regard to QTL position accuracy were very limited, with a significantly better mean square error (MSE) with the LDLA regression (LDLA_reg) in sparse map cases; the contrary was observed, but not significantly, in dense map situations. The computing time required for the LDLA variance components (LDLA_vc) model was much higher than the LDLA_reg model. The precision of QTL position estimation was compared for four numbers of half-sib families, four different family sizes and two experimental designs (half-sibs, and full- and half-sibs). Regarding the number of families, MSE values were lowest for 15 or 50 half-sib families, differences not being significant. We observed that the greater the number of progenies per sire, the more accurate the QTL position. However, for a fixed population size, reducing the number of families (e.g. using a small number of large full-sib families) could lead to less accuracy of estimated QTL position.
منابع مشابه
QTL detection for a medium density SNP panel: comparison of different LD and LA methods
BACKGROUND New molecular technologies allow high throughput genotyping for QTL mapping with dense genetic maps. Therefore, the interest of linkage analysis models against linkage disequilibrium could be questioned. As these two strategies are very sensitive to marker density, experimental design structures, linkage disequilibrium extent and QTL effect, we propose to investigate these parameters...
متن کاملThe Pattern of Linkage Disequilibrium in Livestock Genome
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...
متن کاملLinkage analysis of microsatellite markers on chromosome 5 in an F2 population of Japanese quail to identify quantitative trait loci affecting carcass traits
An F2 Japanese quail population was developed by crossing two strains (wild and white) to map quantitative trait loci (QTL) for performance and carcass traits. A total of 472 F2 birds were reared and slaughtered at 42 days of age. Performance and carcass traits were measured on all of the F2 individuals. Parental (P0), F1 and F2 individuals were genotyped with 3 microsatellites from quail chrom...
متن کاملEffects of Marker Density, Number of Quantitative Trait Loci and Heritability of Trait on Genomic Selection Accuracy
The success of genomic selection mainly depends on the extent of linkage disequilibrium (LD) between markers and quantitative trait loci (QTL), number of QTL and heritability (h2) of the traits. The extent of LD depends on the genetic structure of the population and marker density. This study was conducted to determine the effects of marker density, level of heritability, number of QTL, and to ...
متن کاملA comparison between methods for linkage disequilibrium fine mapping of quantitative trait loci.
We present a maximum likelihood method for mapping quantitative trait loci that uses linkage disequilibrium information from single and multiple markers. We made paired comparisons between analyses using a single marker, two markers and six markers. We also compared the method to single marker regression analysis under several scenarios using simulated data. In general, our method outperformed ...
متن کامل